A Functional Combinatorial Central Limit Theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A functional combinatorial central limit theorem

The paper establishes a functional version of the Hoeffding combinatorial central limit theorem. First, a pre-limiting Gaussian process approximation is defined, and is shown to be at a distance of the order of the Lyapounov ratio from the original random process. Distance is measured by comparison of expectations of smooth functionals of the processes, and the argument is by way of Stein’s met...

متن کامل

A Functional Central Limit Theorem for The

In this paper, we present a functional fluid limit theorem and a functional central limit theorem for a queue with an infinity of servers M/GI/∞. The system is represented by a point-measure valued process keeping track of the remaining processing times of the customers in service. The convergence in law of a sequence of such processes after rescaling is proved by compactness-uniqueness methods...

متن کامل

A functional central limit theorem for PEPA

We present a functional central limit theorem which quantifies, as a stochastic process, the difference between a PEPA model’s underlying CTMC and its fluid approximation. We generalise existing theory to handle the case of non-smooth rate functions, which is an issue particular to modelling problems in computer science. We verify the weak convergence empirically and suggest future avenues for ...

متن کامل

On the error bound in a combinatorial central limit theorem

Let X = {Xij : 1 ≤ i, j ≤ n} be an n× n array of independent random variables where n ≥ 2. Let π be a uniform random permutation of {1,2, . . . , n}, independent of X, and let W =∑ni=1 Xiπ(i). Suppose X is standardized so that EW = 0,Var(W)= 1. We prove that the Kolmogorov distance between the distribution of W and the standard normal distribution is bounded by 451 ∑n i,j=1 E|Xij |3/n. Our appr...

متن کامل

bounds for a combinatorial central limit theorem with involutions

Let E = ((eij))n×n be a fixed array of real numbers such that eij = eji, eii = 0 for 1 ≤ i, j ≤ n. Let the symmetric group be denoted by Sn and the collection of involutions with no fixed points by Πn, that is, Πn = {π ∈ Sn : π 2 = id, π(i) 6= i∀i}. For π uniformly chosen from Πn, let YE = Pn i=1 eiπ(i) and W = (YE − μE)/σE where μE = E(YE) and σ 2 E = Var(YE). Denoting by FW and Φ the distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2009

ISSN: 1083-6489

DOI: 10.1214/ejp.v14-709